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Abstract
Abstract: Rain streaks particularly in heavy rain can cause
severe occlusion on the background scene, which will de-
grade the visual quality of images captured outdoor and af-
fect adversely the performance of many computer vision al-
gorithms. Recently, numerous de-raining algorithms based
on deep learning were proposed and achieved great success,
most of which trained the model on the fully labeled syn-
thetic rainy images due to real-world rainy images lacking
paired label images. However, there is a performance bias
between synthetic and real-world rainy images due to the
distribution discrepancy of features between these two types
of images. Thus, most algorithms generalize poorly to real-
world images. To alleviate this bias, a semi-supervised learn-
ing was proposed to train the network both on the labeled
synthetic and unlabeled real-world rainy images, which re-
duces the distribution discrepancy by minimizing the differ-
ence of the first-order and second-order statistic information.
Meanwhile, in view of the complex and diverse character-
istics of rain patterns, a multi-scale network was introduced
to obtain richer image features and improve the performance
of the model. Experimental results show that the proposed
algorithm improves Peak Signal-to-Noise Ratio (PSNR) and
Structural SIMilarity (SSIM) by at least 0.66dB and 0.01, re-
spectively, in the Rain100H dataset compared with other al-
gorithms, such as Joint Network (JDNet), Synthetic-to-Real
Transfer Learning (Syn2Real) and so on. More importantly,
with the reduction of distribution discrepancy, the proposed
algorithm achieves a clear performance gain on the real-world
rainy images.

1 Introduction
In the age of autonomous driving, how to deal with noise
in the rain is becoming more and more important. The pres-
ence of raindrops in the picture will lead to the problems of
low visibility, low contrast, blurring and color offset in the
whole scene, and then lead to the low recognition accuracy
of other objects, which greatly increases the possibility of
traffic accidents due to recognition errors, resulting in seri-
ous consequences. Therefore, removing the raindrop noise
from the image to obtain a clear image has a great posi-
tive impact on the whole field of autonomous driving and
even computer vision. Rain removal, in fact, is a classifica-
tion process that considers an image as two layers: a rainless
layer and a rain layer, and then separates the rain layer from
the original image, leaving a rainless map. In recent years,

single image rain removal algorithms can be roughly divided
into model-driven and data-driven. Before 2017, the typical
image rain removal algorithm was a model-driven algorithm
(non-deep learning algorithm) influenced by image decom-
position, sparse coding and prior based Gaussian mixture
model. Since 2017, influenced by deep convolutional net-
work, generative adversarial network and semi-supervised
or unsupervised algorithm, image rain removal algorithm
has entered the period of data-driven algorithm (deep learn-
ing algorithm).

Despite the advance of the data-driven method, there is an
obvious limitation. As typical deep learning, the de-raining
network requires a large-scale labeled dataset for training.
Due to the difficulty of the annotation for the real-world
rainy images, many synthetic datasets were built, in which
the rain-free background images are referred to as the pixel-
wise supervised labels and the corresponding rainy images
are synthesized by image procession software or code. How-
ever, the rain streaks in synthesized images differ from those
in real-word images. Thus, there would be a performance
drop when the network trained on the synthetic rainy im-
ages is tested on the real-world rainy images. To resolve
this problem, we propose a semi-supervised learning for sin-
gle image de-raining, which trains the deep network on the
labeled synthetic and unlabeled real-world rainy images si-
multaneously.

In order to solve the problems of the above single-image
rain removal algorithm, this paper proposes a new single-
image rain removal algorithm based on semi-supervised
learning, which inputs the labeled synthetic rain images and
the unlabeled real-word rain images into the network be-
fore the rain pattern removal operation, accurately models
the first-order and second-order statistical information of the
two feature maps, and makes the feature distribution of the
synthetic rain images and the real rain images consistent by
minimizing the Euclidean distance of the mean vector and
covariance matrix of the two, so as to improve the rain re-
moval performance of the rain removal model in the real-
word rain images.

2 Related Work
Deep learning based methods have shown dramatic im-
provements in image rain removal by using large-scale
paired data. Since to obtain paired images of rain and rain-



Figure 1: Rain leads to low object recognition accuracy

free images is intractable, many of deep-learning deraining
methods train the networks in a fully supervised. However,
there are domain gaps between synthetic rain and real rain
images, which make the deraining performance not opti-
mum. To solve the problem, semi-supervised methods that
exploit real rain images is introduced.

2.1 Supervised Learning Methods
(Yang et al. 2017a) firstly developed a multitask architec-
ture that can detect rain locations by predicting the binary
rain mask and take a recurrent framework to remove rain
streaks and clear up rain accumulation progressively. (Fu
et al. 2017) explored a three-layer convolutional network
to predict clean image high-frequency component from its
rain-contaminated counterpart. Motivated by deep residual
network (ResNet), (Fu et al. 2017) further extended it to a
20-layer CNN structure (DDN) to reduce the mapping range
from input to output and then to make the learning process
significantly easier. Instead of relying on image decompo-
sition framework, (Zhang and Patel 2018) proposed a con-
ditional generative adversarial networks (GAN) for single
image derainin and rs further presented a density-aware im-
age deraining method using a multistream dense network
(DID-MDN) to adaptively determine the rain-density infor-
mation by integrating a residual-aware classifier process. (Li
et al. 2018a) proposed a stage-by-stage recurrent squeeze-
andexcitation based context aggregation network(RESCAN)
to remove rain streaks in multiple stages. (Ye et al. 2021) ar-
gue that the rain generation and removal should be tightly
coupled and propose to jointly learn real rain generation
and removal procedure within a unified disentangled im-
age translation framework. Extensive experiments on syn-
thetic and real-world rain datasets show the superiority of
proposed method compared to state-of-the-arts.

2.2 Semi Learning Methods
In order to improve the generality and scalability of the rain
removal model, semi-supervised and unsupervised learning
methods make an attempt to learn directly from real rain
data. (Wei et al. 2018) adopted DDN as the backbone (su-
pervised part) and regularized rain layer with GMM to feed
unsupervised rainy images. What’s more, presented a GP-
based SSL framework and estimate the pseudo-GT that is

used to supervise for the unlabeled samples at the latent
space by jointly modeling the labeled and unlabeled latent
space vectors using the GP. (Wang et al. 2018) propose a
memory-oriented semi-supervised (MOSS) method which
enables the network to explore and exploit the properties
of rain streaks from both synthetic and real data. The key
aspect of this method is designing an encoder-decoder neu-
ral network that is augmented with a self-supervised mem-
ory module, where items in the memory record the pro-
totypical patterns of rain degradations and are updated in
a self-supervised way. (Yue et al. 2021) proposes a new
semi-supervised video deraining method, in which a dy-
namic rain generator is employed to fit the rain layer, expect-
ing to better depict its insightful characteristics. Specifically,
such dynamic generator consists of one emission model and
one transition model to simultaneously encode the spatially
physical structure and temporally continuous changes of rain
streaks, respectively, which both are parameterized as deep
neural networks (DNNs).

3 Proposed Solution
As shown in Figure 2, the overall idea of the single image
rain removal algorithm based on semi-supervised learning
is as follows:
1. In the feature transformation space, the input rain image

is converted into feature vectors;
2. In the semi-supervised matching network, the difference

between the first-order and second-order statistical infor-
mation of the synthetic rain map and the real rain map
feature vectors is minimized so that the two distributions
are consistent;

3. In the multi-scale rain removal network, the rain pattern
is removed by multiple multi-scale rain removal units to
achieve to obtain a clean background feature map;

4. In the image conversion space, the clean background fea-
ture vector after rain removal is converted to an image
representation.

3.1 Semi-supervised matching networ
To solve the problem of poor generalization of purely su-
pervised learning rain removal model in real-world rain im-
ages,(Yasarla, Sindagi, and Patel 2020) proposed a semi-
supervised rain removal algorithm based on rain removal,



Figure 2: Multi-scale network structure based on semi-supervised learning

but in fact the rain removal algorithm did not improve the
rain removal effect in real rain images. The reason may be
that the algorithm is to minimize the difference between the
synthetic rain map rain pattern and the real rain map rain
pattern after the rain removal, which makes the model de-
viate from the target during the learning process. There-
fore, the semi-supervised learning algorithm proposed in
this paper will minimize the difference between the first-
order and second-order statistical information of the syn-
thetic rain map and the real rain map in the semi-supervised
matching network before the de-rain step, so that the distri-
bution of the synthetic rain map rain pattern features is con-
sistent with the real rain pattern and improve the model’s
ability to de-rain in real-world rain images.

Figure 3: Detailed structure of Semi-supervised matching
network

It can be observed that there are huge differences be-
tween synthetic rain patterns and real rain patterns in terms
of color, brightness, and shape. To minimize the differences
between synthetic and real rain images, this paper designs
the semi-supervised matching network structure in Figure 3
and proposes the loss value function based on the probability
distribution distance and the second-order statistical feature
distance information of synthetic and real rain images from
two perspectives of data distribution and feature alignment
as

Lmatch = Lmean + Lcovariance

where Lmean is the first-order information loss function
and Lcovariance is the second-order information loss func-
tion. According to the theory of Maximum Mean Discrep-
ancy (MMD), if the mean difference between two samples
is equal to zero, the two samples are equally distributed.In

this paper, the loss function is proposed to minimize the dis-
tance between the first-order information mean vectors of
synthetic and real rain maps

Lmean = ||Ms −Mr||F

where Ms is the mean vector of the synthetic rain map,
Mr is the mean vector of the real rain map, and || · ||F
is the F-parametrization of the matrix. In addition, this pa-
per also considers the information of the second-order co-
variance matrix of the synthetic rain map and the real rain
map, by first calculating the covariance matrix of both, and
then calculating the Euclidean distance of the two covari-
ance matrices, and finally improving the difference between
the synthetic rain map and the real rain map by minimizing
the value of the loss function , Lcovariance and the effect is
shown in Figure 4. The Lcovariance calculation is as follows:

Lcovariance =
1

d
||(Fs −Ms)(Fs −Ms)

T−

(Fr −Mr)(Fr −Mr)
T ||F

where d is the dimension of the feature vector, Fs is the fea-
ture vector of the synthetic rain map, and Fr is the feature
vector of the real rain map.

3.2 Multi-scale De-raining network
Complementary information can be obtained during the
training process of networks of different scales, in which
low-resolution networks can capture the appearance details
of a given rainy day image, and high-resolution networks
can retain the semantic information of a given rainy day im-
age, so this paper introduces a multi-scale rain removal net-
work, and the network structure is shown in Fig.5.

The multi-scale de-raining network contains multiple
multi-scale de-raining units, and residual connections (He
et al. 2016) and dense connections (Huang et al. 2017) are
used between each multi-scale de-raining unit, in which the
residual connection can more effectively transmit the fea-
ture information to the deeper network information, and the
dense connection can connect any two layers in the network,



Figure 4: Detailed structure of Semi-supervised matching
network

so that each layer in the network can receive the feature in-
put of all the previous layers, maximizing the network infor-
mation reception while effectively suppressing the gradient
dissipation problem that will occur in the training process.
In the multi-scale rain removal unit, multi-scale features are
first obtained by pooling operation downsampling with dif-
ferent kernels and step sizes:

Si = Poolingi(F ), i = 1, 2, ..., n

where F represents the input of each multiscale raining unit,
Poolingi is the maximum pooling operation with 2i−1 ×
2i−1 kernel and 2i−1×2i−1 step size maximum pooling op-
eration, Si is the output of the i-th scale maximum pooling
operation in the multiscale structure, and n is the number of
scales. Then use the convolutional cascade module on each
scale to extract features for each scale and implement rain
removal:

Zi = CCLBi(Si), i = 1, 2, ..., n

where CCLBi represents the i-th scale cascade convolu-
tional rain removal operation, and Zi represents the output
of the i-th scale rain removal operation. Finally, through the
upsampling operation and multi-scale fusion operation, the
complementary features above each scale are obtained, so

Figure 5: Detailed structure of Semi-supervised matching
network

that the network can obtain the most effective features as
much as possible and improve the rain removal ability of the
network:

F̂ =

n∑
i=1

Zi

4 Experiments
4.1 Experimental configuration and dataset
The complete network structure proposed in this paper runs
under the Python framework of GeForce RTX 3090 graphics
card and Ubuntu 18.04.5 LTS system. In the training pro-
cess, 100 64× 64 image pairs are randomly cut from the
training data set as input and optimized by ADAMwe set
initial learning rate 5× 10−4 and we set matching loss func-
tion weight ω 1, batch size 16, scale number n 3, number of
eigenvector channels 32.

In this work, we uses two classic composite datasets
Rain100L Rain100H et al.(Yang et al. 2017b),and a real
rain map dataset collected for model training.After all,in
the above two classic synthetic datasets and generalized test
datasets Rain12 ,Yang et al.(Yang et al. 2017b),Zhang et
al.(Zhang, Sindagi, and Patel 2019),and Wang et al.(Yang
et al. 2017b) proposed three real rain map datasets for model
testing.

4.2 Experiment and analysis of de-raining on
synthetic rainy images
In order to objectively evaluate the de-raining algorithm
based on semi-supervised learning proposed in this paper,
Structural SIMilarity ( SSIM )(Wang et al. 2004) and Peak
Signal-to-Noise Ratio ( PSNR )(Zhang, Sindagi, and Patel
2019) are selected as evaluation indicators. It is tested on
two classical synthetic datasets Rain100H, Rain100L and
generalization test dataset Rain12 with state-of-the-art algo-
rithms RESCAN ( Recurrent Squeeze-and-Excitation Con-
text Aggregation Net )(Li et al. 2018b), PreNet ( Progressive
Image Deraining Networks )(Ren et al. 2019), SSIR ( Semi-
Supervised Transfer Learning )(Wei et al. 2019) and JDNet (
Joint Network )(Wang et al. 2020). Test results are shown in
Table 1, the results of this algorithm has been rough display.

By analyzing table 1, it can be concluded that the peak
signal-to-noise ratio ( PSNR ) and structural similarity (
SSIM ) of the algorithm in this paper are higher than other
algorithms in the data set Rain100H and Rain100L. It can be
seen that the algorithm in this paper has greatly improved in



Algorithms Rain100H Rain100L Rain12
PSNR/dB SSIM PSNR/dB SSIM PSNR/dB SSIM

RESCAN 25.92 0.84 36.12 0.97 32.35 0.89
PreNet 27.89 0.89 36.69 0.98 34.77 0.96
SSIR 22.47 0.71 32.37 0.92 24.12 0.78
JDNet 30.02 0.92 38.65 0.99 37.02 0.97
ours 30.68 0.93 39.53 0.99 36.61 0.97

Table 1: Quantitative de-raining results of average PSNR and SSIM on the synthesized datasets

Figure 6: Visual comparison of different algorithms on real rainy images

removing rain streaks and restoring detail features. Although
the PSNR evaluation index of the proposed algorithm in the
synthetic dataset Rain12 is slightly lower than that of JD-
Net, the subsequent experimental results show that the semi-
supervised rain removal algorithm proposed in this paper is
significantly better than JDNet in real rain removal.

4.3 Experiment and analysis of de-raining on
real-word rainy images
In order to verify the generalization ability of the semi-
supervised rain removal algorithm proposed in this paper in
the real rain map, the real rain map data sets proposed by
Yang et al.(Yang et al. 2017b), Zhang et al.(Zhang, Sindagi,
and Patel 2019) and Wang et al.(Wang et al. 2019) were
tested and the rain removal results of RESCAN and JDNet
based on supervised learning rain removal algorithms and
SIRR and Syn2Real ( Synthetic-to-Real Transfer Learning )
based on semi-supervised learning rain removal algorithms
were compared. Since the real rain image has no label im-
age, the performance can only be evaluated by visual ob-
servation of the image results. This paper selects some test
results as shown in Fig.6.

Conclusion

In this paper, an end-to-end neural network based on semi-
supervised learning is established for a single image de-
raining task. Before the realization of de-raining, the first-
order mean vector information and second-order covariance
statistical information of the synthetic rainy images and the
real rainy images are used by the semi-supervised matching
network to minimize the difference in the feature distribu-
tion between the synthetic rainy images and the real rainy
images, and improve the generalization of the de-raining
model in the real rainy images. At the same time, a multi-
scale de-raining network is proposed, which connects multi-
ple de-raining units through residual dense connection, and
fully extracts the effective complementary features in multi-
ple scales to achieve efficient de-rainingl effect. Through the
training and test result analysis on the dataset, it can be ob-
tained that the proposed algorithm not only obtains higher
scores in the PSNR and SSIM evaluation indicators of the
synthetic dataset, but also greatly improves the visual effect
of de-raining in the real rainy images compared with the ex-
isting algorithm.
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